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and, of course at the point 0, where the Fourier 
coefficient is the average density P0. 

The space group p8gm has 

t/:',,,(2( ~+ ~'J+')-½, ~r(2~ "j+ ~'J±l) ---- 0. (5.8) 

If we take the Fourier coefficients at the lattice vectors 
(5.7) to be given by 

p(2srJ + srJ±')= ±p, ,  j = 0 , . . . , 7 ,  (5.9) 

where p~ is a constant overall amplitude, then it is 
evident from Fig. 2 and the defining relation (2.4) 
that mirrorings and rotations of (5.9) are indeed 
characterized by the phase functions (5.8). 

The symmetry of the resulting real-space density 
is shown in Fig. 3, by coloring the plane black or 
white depending on the sign of p - p 0 .  To aid the 
reader in deciding to what extent 'quasi-glide lines' 
are present in this pattern, we display in Fig. 4 the 
corresponding symmorphic pattern with p8mm sym- 
metry given by taking all 16 Fourier coefficients in 
(5.9) to have the same sign. 

We have enjoyed useful discussions with David 
DiVincenzo, Lisbeth Gronlund, Chris Henley, Jason 
Ho, Tom Lubensky, Jim Sethna, Josh Socolar and 
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Abstract 

A rotation axis vector with magnitude tan (0/2) for 
a rotation angle 0 and a closely related unit vector 
of dimension 4 are used to show that : (i) the quadratic 
residual (weighted sum of squares of coordinate 
differences) that results when one vector set is rotated 
relative to another is a quadratic form of order 4, (ii) 
the stationary values of the residual are given by the 
eigenvalues of a matrix of order 4, (iii) the minimum 
residual is given by the largest eigenvalue, (iv) the 
rotations required to obtain such residuals are 
uniquely defined by the corresponding eigenvectors, 
and (v) the stationary values are related by the 
operations of 222 symmetry. No precautions against 
the generation of improper rotations are required. In 
addition, an equivalent solution based on a scalar 
iteration is presented, together with some relation- 
ships of general interest. 

0108-7673/88/020211-06503.00 

Introduction 

The problem of the optimal superposition of one 
vector set on another by pure rotation arises notably 
in the comparison of parts of related protein 
molecules, and its solution has attracted the attention 
of a number of writers, notably McLachlan (1972, 
1979, 1982), Kabsch (1976, 1978), Diamond (1976) 
and Lesk (1986). 

McLachlan's earlier method is iterative and 
analogous to rotating one vector set about the axis 
of the prevailing couple to reduce that couple to zero, 
when the couple is supposed to be the sum of the 
moments arising from forces along the lines separat- 
ing equivalent points in the two vector sets having 
magnitudes proportional to those separations. His 
later method is an eigenvalue/vector method using a 
symmetric matrix of order 6. Kabsch's method is an 
eigenvalue/vector method based on matrices of order 
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3 but requires the use of  i~agrange multipliers to 
constrain the resulting matrix to be orthogonal.  
Diamond ' s  method does not impose orthogonali ty on 
the t ransformat ion relating the vector sets, but allows 
it to be a general t ransformat ion which is then inter- 
preted rigorously as the combinat ion of rotation and 
homogeneous  or inhomogeneous  strain. Lesk's 
approach,  leading to the solution of a polynomial  of 
order 4, is possibly the one most closely related to 
the present work. 

In this paper  we show that the analysis of the 
problem is simplified and enriched by casting the 
algebra in terms of half the required angle of rotation, 
8/2,  rather than 0 itself, leading to an unconstrained 
e igenvalue/vector  problem of order 4, or to a scalar 
iteration involving inversion of a matrix of order  3. 

What follows is valid for the rotation of  one vector 
set onto another  using any prevailing origins for these 
vector sets. It is well known that the optimal rotational 
superposi t ion is achieved if the data sets are referred 
to their respective centroids as origins, and it is 
assumed that if this is required, then this step has 
been performed as a preliminary,  and no further 
attention is given to translat ional  components .  

because I1 x d[ is the radius of  the arc along which d 
moves. The identities 

2t 1 - t: 
s i n 0 - 1 + t  2' c o s 0 - 1 + t  2 (3) 

then give 

2 
d ' = d +  t 2 { ( r x d ) + [ r x  ( rxd) ]}  (4) 

1+ 

= d+  2{o-(X x d )+  [X x (X x d)]}. (5) 

These expressions are linear on d, and may be 
expanded to give the orthogonal  matrix satisfying 
d'=  Rd as 

R = m  
1 

(1 +/2)  

(1 + u 2 - v 2 - w 2) 2(uv- w) 2(uw+ v) \ 

x 2(uv+w) ( l - - u 2 +  722-- W 2 ) 2(vw-u) ) . 
2(uw-v) 2(vw+u) (1-u2-ve+w 2) 

(6) 

Equation (6) may alternatively be obtained from the 
s tandard form of R based on 1 and 0 using the 
identities (3). Similarly (5) gives 

The representation of  rotation 

We define three 3-vectors, 1, r and k and a 4-vector 
p such that 

l T -- (/, m, n) is a unit vector of direction cosines 
of  the axis of rotation, 

r r  = ( q ,  r2, r3) = (u, v, w ) =  tl T 
with t = tan (0 /2) ,  Irl -- r = t, ( 1 ) 

k 3" = (AI, A2, A3) = (A,/z, v) = sl r 
with s =s in  (8 /2) ,  

p r = (A,/z, v, tr) = (k r, o-) with o" = cos (8 /2) .  

By definition ITl = p r p  = 1, but the elements of r are 
independent ,  equivalent  and unbounded.  

If the vector d (Fig. 1) is rotated through an angle 
0 about l to d' then 

d ' = d + ( I x d )  sin 0 + [ I x  ( l x d ) ] ( 1 - c o s  8) (2) 

I 

o ('×d)~,n0 

Fig. 1. The manner  in which the rotated vector d' is made up from 
the unrotated vector d and two additional vectors. | is a unit 
vector in the direction of  the axis of  rotation. 

R ~ 

( (A2-- ~ 2 -  V 2 + O  "2) 2(A# - vo') 2(fir +/zo') '~ 

2(/~/2, "{" /,'(7") ( - -k  2"1"- 1,/, 2 -  / , ' 2+0  "2) 2( / zv -  Ao') /"  

2 ( A v -  ~ )  2(/zv + A~) (-)t2-p.2+ v2+0"2)/ 

(7) 

Note that improper  rotations are excluded by this 
definition, and that negation of l, m, n and 0 (which 
leaves the rotation unchanged)  leaves r and p 
unchanged,  and negation of p (which leaves p r p p  
unchanged,  see below) adds 27r to 8. 

Formation of the ant isymmetr ic  part of the product  
R = R2R, using (6) shows that the combinat ion of two 
rotations is given by 

r2 + r I + r 2 X r ! 
r =  (8) 

1 - r 2  • r~ 

or, equivalently,  

2k = ~.2crl + ~.1 cr2-f- 2k2 X A, 1 
(9) 

cr = crier 2 - h 2 .  hs 

as given by Aharonov,  Farach & Poole (1977). It 
follows that any two rotations for which rn. r2 = 1 
result in a combined rotation of 180 °. 

The superposition problem 

In this section we use a subscript notation in which 
lower- or upper-case subscripts denote summat ion or 
no summat ion respectively. The subscript a relates 
to points (atoms) in the vector sets, other subscripts 
relate to coordinates.  
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The weighted sum of squares of errors, E, between 
the vector set X and the rotated vector set Rx, is 

E = W ~ ( X , ~ -  Ruxj , , ) (X,a-  R,kXk,,) (10) 

= Wa(XiaXia - Ruxj,,X,,, - XiaRikXka + XjaXja) (11)  

2 
RIjXjA = XIA +~--~r2( eljkrjXkA + eljkrjeklmrlXmA) (12) 

E =  W o ( X , ~ X i a - 2 { x i a  +l--~r2[eijki3Xko 

+ ( t~ilSjm -- ~imt~jl ) rjrlXma ] } Xia + XjaXja ) (13)  

4Xia 
= w o  (x,o-x,o)(x,o-x,o) 

x (eOkrjXk~ + rjrixj~ -- r;rjxi~)]. (14) 

Hence E is minimized by the (unconstrained) vector 
r which maximizes 

4 W,,Xia 
~o - i + -~ ( eukrjXka + r, rjxja - rjrjX,a ). ( 1 5) 

Defining the matrices M and Q and the vector V by 

Mt2 = WaxI~Xja (16) 

Q = M + M T - 2 I t r M  (17) 

V I = EljkWaXjaXka = EljkMjk (18) 

gives 

in which 

2 
q~ = 1 - ~ ( 2 r .  V+r TQr )  (19) 

= 2(20-k. V + k TQR) (20) 

= 2 p T p p  (21)  

v) 
Hence ~ is maximized by the normalized eigenvec- 

tor p of largest eigenvalue of the matrix 

v) 
p then, by definition, determines the axis of rotation 
and the angle, including its quadrant. The residual E 
is then given by 

E = E o -  2pTpp (23) 

in which 

Eo = W a ( X , a - x , , , ) ( X , a - x , a )  (24) 

is the initial value of E and the corresponding rotation 
matrix is given by (7) above. Rotations determined 
in this way are accurate and reliable, and there are 
no special cases. An angle of 179.999 ° for which 
tan ( 0 / 2 ) =  105 has been correctly measured using 
single-length working (24-bit mantissa) without 
requiring any special care. Note that M and P each 
have nine independent elements and thus the same 
information content. 

Equation (23) is valid for all unit vectors p in 
4-space and their associated matrices (7) and there 
are four stationary values of E corresponding to the 
four eigenvalues, p, of P. 

If x' represents the vector set x in an alternative 
initial orientation, for which may be calculated the 
corresponding E~ and P', then, since the same station- 
ary values of E are accessible by rotation from the 
alternative initial orientation, it follows that the eigen- 
value spectra of P and of P' are the same except for 
an offset given by ½(Eo-E~), and that the interval 
(Pmin,  Pmax) contains the origin. Pmax = 0 O c c u r s  if the 
initial orientation of x is, in fact, the best superposi- 
tion on X, and Pmin = 0 occurs if the initial orientation 
is the worst fit. 

If the initial (arbitrary) orientation of the vector 
set x is designated by a subscript zero, and the orienta- 
tions corresponding to the stationary values of E are 
designated by subscripts 1 to 4, then the rotation 
vector to1 rotates x from the initial orientation to 
orientation 1, to2 is from the initial orientation to 
orientation 2 and r12 rotates from orientation 1 to 
orientation 2, then we may rotate from 1 to 2 either 
by applying r~2 or by applying -ro~ followed by ro2; 
therefore (8) gives 

ro2 - rol - ro2 x rol 
rl: - (25) 

1 + ro~ .  ro2 

Now the eigenvectors of P correspond to Pol, Po: 
etc. and, being eigenvectors of a real symmetric 
matrix, are orthogonal, i.e. 

p T p 0  2 0 T (26) = ~01~.02 "+ 0"010"02 

• ". rol • ro2 + 1 = 0.  

Therefore Ir121 =oo and the corresponding rotation 
012 = ,-ft. 

Thus the orthogonality of the eigenvectors demon- 
strates that the four orientations with stationary 
values of E are related by the operations of 222 
symmetry. 

If X and x are interchanged, Q is unchanged but 
V is negated. Thus new eigenvectors are obtained by 
negating 0-, consistent with the requirement that if 0 
optimally rotates x onto X, then a rotation - 0  about 
the same axis optimally rotates X onto x. 
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X and x may also be superposed by rotating each 
through an angle +0/2  using 

- - + o "  
~1+o" 

and its transpose. 

1+o- v \ l + c r  /~ 

(27) 

If the vectors in either X or x or both are collinear 
P is degenerate, the eigenvalues are equal in pairs 
and a p vector which is any linear combination (sub- 
ject to unit norm) of the two relevant eigenvectors 
produces a stationary residual. Equation (25) then 
establishes that such degenerate solutions are related 
by arbitrary rotation about the line of collinearity. 

As an alternative to solving a 4 x 4 eigenproblem 

2 
q~ = 1--~r2 (2r. V+ rTQr) (28) 

- 4 r  
V ~o - (1 + r2)------------~ (2r. V + r r  Qr) + (2V+ 2Qr) (29) 

giving stationary values when 

r[2r • V + r r Q r ]  = (1 + r2)(V + Qr). (30) 

One may define 

2r. V + rTQr 
l + r  2 

= ( r r l ) ( ? T  O) ( ; ) / ( r T 1 ) ( ~ )  

= pTpp, (31) 

form the scalar product of (30) with r and substitute 
a to give 

ar  2 = r .  V + r rQr  (32) 

as the equation to be solved. Substitution of r rQr  
from here into the definition of a gives 

2 r . V + ( a r 2 - r . V )  
a = r2 (33) 1+ 

Therefore 

a = r . V  (34) 

and the equation to be solved for r is [from (30) and 
(31)] 

r(V. r) = V + Q r ,  (35) 

i. e. 

( a l - Q ) r = V  (36) 

r :  ( a I - Q ) - W  (37) 

Vrr  = a = v T ( a I - Q ) - ~ V .  (38) 

This may be solved for a iteratively with reference 
to Fig. 2, in which the straight line represents the 
left-hand side of (38) and the other four branches 
represent the right-hand side, with singularities where 
a is an eigenvalue of Q. The solution may be obtained 
by iterating 

r,, --- (o¢,,I - Q)-  ~V (39) 

V .  r .+a.r2 .  
2 , (40) 

a . + ]  - 1 + rn 

and to obtain the smallest E the largest a must be 
found since E = E o - 2 a  by (23) and (31). Hence a 
good initial iterate is 

ao = Eo/2 (41) 

and the corresponding transformation is given by 
using the elements of r from (39) in (6). 

This iteration has the attractive property that if x 
and X are exactly superposable then the initial iterate, 
ao, is the analytic solution, the first cycle produces 
no change and the iteration terminates immediately. 
Only if x is an inexact image of X (as when either or 
both involve experimentally determined coordinates) 
is an iteration required at all. 

If the required rotation is 180 ° then ( a I - Q )  is 
singular at the end of the iteration. This is recogniz- 
able by its determinant being small (e.g. 10 -6 ) in 
relation to the product of its trace with the trace of 
its adjoint. Its adjoint is then ofrank 1 and the product 
of the adjoint with V gives the direction of r. A 180 ° 
rotation about this vector is given by the limiting form 
of (6) as  t2-'-~O0, i.e. 

R~. = 2 1 1 7  - I .  ( 4 2 )  

If, in addition, V is an eigenvector of Q the product 
[adj ( c r l -Q) ]V  may also vanish, and in this case any 

I 

Fig. 2. Graphs of the left- and right-hand sides of equation (38) 
showing the four possible solutions of that equation. The 
required solution is the one with largest a. The vertical 
asymptotes occur where a is an eigenvalue of Q. 
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non-vanishing row or column of the adjoint will do 
to establish 1. However, if x and X are superposable, 
rotation angles measured are correct to 0.01 ° or better, 
provided the angle differs from 180 ° by 0.1 ° or more. 

If thc rotation required is close to ~r and x and X 
are not exactly superposable, then there is a possibil- 
ity of a going below the largest eigenvalue of Q, 
recognizable by the determinant of (o~ l -Q)  going 
negative. The iteration will then converge on the next 
best stationary value of E unless stopped immedi- 
ately. Such cases are better handled by the previous 
approach using eigenvectors of P. However, such 
cases have only occurred when the coordinate errors 
(i.e. dep.artures of x from an image of X) are compar- 
able with the coordinates themselves and with the 
more usual problems where x and X are closely 
similar, convergence has always been accurate in one 
cycle, and the speed of the iteration is thought to 
outweigh this limitation. 

Some further relationships of interest 

We define matrices A, S and T by 

A1s = EIJkAk -- 0.t~lJ (43) 

and 

S =  ~ T  = - -h  --0. 

p, u 

-/.i. A 0. 

- h  - /z  - u  

(44) 

Then S and T are orthogonal, S has the property that 

01) 07- (45) 

according to (7), and T has the property that the 
rotation vector 9, resulting from compounding n 
rotations is given by 

/ 0 \  

T T  T/! / 46 
\ 1 /  

thus permitting the direct calculation of axes and 
rotation angles. Cayley's theorem (Courant & Hilbert, 
1953, 1962) gives 

A(AT-)-~ = R. (47) 

Fig. 3 shows some relationships that arise when 
two rotations are compounded and represents a 

stereogram in which the directions of rotation axes 
are plotted, labelled by their 4-dimensional counter- 
parts. The points marked pl and p2 are the axes of 
first and second rotations with angles 01 and 02, and 
with an angle ~ between them. Evidently rotation 1 
moves A to B and rotation 2 moves B back to A. 
Therefore the combined rotation leaves the direction 
of A unchanged so that A must be the axis  of the 
combined rotation. Similarly for B if rotation 2 is 
applied first. Since the first rotation leaves pl 
unchanged and the second moves it to P'I, the com- 
bined rotation angle 0 about A is as indicated. 

Solution of the spherical triangle p l p 2 A  generates 
the second equation (9). Solution of the spherical 
triangle p~p2C shows that 

o~p2= cos ~. (48) 

If we construct a matrix $2, which is an S matrix 
formed from the elements of the rotation vector P2, 
then the product S2p~ plots at D since 

= = = P3, (49) 
\ o'1o'2 + h.2 • 2~1 ] 0"3 

which corresponds to the compound rotation given 
by (9) with h.1 (but not 0.~) negated, i.e. to a rotation 
-0~ about 2~1 followed by 02 about ha. Of these two 
steps the first moves D to C and the second returns 
it to D. Since the same two operations move Pl to p~ 
the rotation associated with 93 is 2~b. Similarly, form- 
ing the product S2P3 corresponds to a rotation - 2 ~  
about D followed by 02 about k2, which operation 

Fig. 3. Stereogram showing how rotation of 01, about p~ followed 
by 02 about P2 is related to the matrix products $2Pl, $29~, T2pl 
and T~2pl. T~pl defines the axis of the compound rotation 01 
about Pl followed by nO2 about P2, and SZpl rotates the vector 
Pl through 02 about P2. Similarly marked angles are equal. 
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leaves P'I unchanged, in agreement with the 
requirement 

° '1 /  X o'! / 
(50) 

Similarly, if the point marked p~ in Fig. 3 now 
represents the direction of any position vector d, then 
d may be augmented to homogeneous coordinates 

and the normalized 4-vector ~ contains all the infor- 
mation in d. Forming the product R2d is seen to be 
analogous to forming $2~. In this sense the transfor- 
mation of a position vector d and the compounding 
of two rotations are seen to be equivalent operations• 

The vectors +[1000], +[0100] and +[0010] rep- 
resent 180 ° rotations about each of X, Y and Z, and 
+[0001] gives the identity. It follows from (9) that 
the first three rows of S, regarded as p vectors, corre- 
spond to the rotation p followed by 180 ° rotations 
about each of the reference axes, and the columns 
likewise correspond to p preceded by 180 ° rotations 
about them. Letting p~ be the first row of S and P2 
the second column allows the corresponding 0 to be 
identified as the angle between the unrotated X axis 
and the Y axis rotated by p, consistent with (45). 

The top row of S, as already stated, is the p vector 
which corresponds to the rotation p followed by a 
rotation of 180 ° about X. This compound rotation has 

p vector [ - o ,  u,-At, A] and the corresponding S 
matrix is therefore 

::) o" - A  

p -At 

In the original rotation o. is algebraically distinct 
from A, /x and u in the ways in which it enters into 
the equations that arise. However, this example shows 
that the four rotations (the original, and three pro- 
duced from it by compounding with 180 ° about X, Y 
and Z) collectively form a set in which A, /z, u and 
o all have equivalent status and none is unique. 

I am indebted to Drs A. D. McLachlan and R. 
Somorjai for helpful discussions. 
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Abstract 

An efficient algorithm is described for finding the 
maximum entropy density distribution under the con- 
straint that (Y.] Flcos  (2~rh. r -  ~o)), where the sum is 
over a subset of reflections whose phase has been 
determined, is constant. This algorithm is combined 
with solvent flattening in a procedure for extending 
phases to higher resolution. A test of the procedure 
on the structure of ribonuclease A and its application 

0108-7673/88/020216-07503.00 

to the determination of two previously unknown 
structures are discussed. 

Introduction 

In crystallography, as in other branches of physics 
such as spectroscopy and radio astronomy, the 
observable data depend on Fourier transforms of 
density distributions that the experimenter wishes to 
determine. Because only the amplitude, not the phase, 
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